Valuations; Congruences; Écriture en base p; normes p-adiques sur \mathbb{Q}

Dans toute la suite, p est un nombre premier.

Exercice 1. Dans une écriture en base 10, par combien de zéros le nombre 2018! se termine-t-il?

Exercice 2. Soit $m, n \in \mathbb{N}$.

- 1. On suppose que m est premier à p. Montrer que $\binom{np}{m} \equiv 0 \mod p$.
- 2. On suppose que $m \leq n$. Montrer que $\binom{np}{mp} = \sum_{k=0}^p \binom{p(n-1)}{pm-k} \binom{p}{k}$. Indication : on pourra considérer $(X+Y)^{np} \in \mathbb{Z}[X,Y]$.
- 3. En déduire que $\binom{np}{mp} \equiv \binom{n}{m} \mod p^2$.

Exercice 3.(Théorème de Wolstenholme) On suppose que $p \ge 5$.

- 1. Montrer que $\binom{p-1}{k-1} \equiv \pm 1 \mod p$ et que $\sum_{k=1}^{\frac{p-1}{2}} k^2 \equiv 0 \mod p$.
- 2. Montrer que $\operatorname{val}_p\left(\sum_{k=1}^{p-1}\frac{1}{k}\right) \ge 2$ et que $\operatorname{val}_p\left(\sum_{k=1}^{p-1}\frac{1}{k^2}\right) \ge 1$.

Indication : on pourra se ramener à une étude dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$ et considérer un changement de variable de la forme $k \mapsto k^{-1}$.

3. En déduire l'identité $\binom{2p-1}{p-1} \equiv 1 \mod p^3$. Remarquer que l'hypothèse $p \geq 5$ était bien nécessaire. *

Exercice 4. On note $|\cdot|_{\infty}$ la valeur absolue usuelle sur \mathbb{Q} . Montrer que

$$\forall a \in \mathbb{Q}^{\times}$$

$$\prod_{p \text{ premier}} |a|_p = \frac{1}{|a|_{\infty}}$$

Exercice 5. On suppose $p \geq 5$. Soit $a \in [2, p-2]$. On pose $a_n = a^{p^n} \in \mathbb{N}$.

- 1. Montrer que la suite $(a_n)_n$ est de Cauchy pour $|\cdot|_p$.
- 2. Supposons que cette suite admette une limite $l \in \mathbb{Q}$ pour $|\cdot|_p$. Montrer que $l^p = l$.
- 3. En déduire que \mathbb{Q} n'est pas complet pour $|\cdot|_p$.

Exercice 6. Soit $(a_n)_{n\in\mathbb{N}}$ une suite d'entiers relatifs. Montrer qu'il existe une sous-suite de (a_n) qui est de Cauchy pour $|\cdot|_p$.

Exercice 7. Soit $a_1, \ldots, a_n \in \mathbb{Q}$ tels que $a_1 + \cdots + a_n = 0$. Montrer qu'il existe $i \neq j$ tels que $|a_i|_p = |a_j|_p$.

Exercice 8. Soit $r \in]0,1[$ et $x,y \in \mathbb{Q}.$ Montrer que $|x-1|_p \le r$ et $|y-1|_p \le r \Longrightarrow |xy-1|_p \le r.$

Exercice 9. On peut voir que si $p \in \{2,3\}$, l'identité $\binom{np}{mp} \equiv \binom{n}{m} \mod p^3$ n'est pas vérifiée une infinité de fois. Plus précisément :

- 1. Montrer que $\binom{3n}{3} \equiv n \mod 27$ si, et seulement si, $n \not\equiv 2 \mod 3$.
- 2. Montrer que $\binom{2n}{2} \equiv n \mod 8 \iff \binom{n}{2}$ est pair $\iff n \equiv 0$ ou $1 \mod 4$.

^{*.} En fait, on dispose de l'énoncé plus général, dû à Jacobsthal, suivant : $\binom{np}{mp} \equiv \binom{n}{m} \mod p^3$.