Lemme de Hensel

Dans toute la suite, p est un nombre premier.

Exercice 1. Montrer que le polynôme $X^3 - 4$ admet une unique racine dans \mathbb{Q}_5 .

Exercice 2.(Lemme de Hensel) Soit $Q(X) \in \mathbb{Z}_p[X]$ et $k \geq 1$.

- 1. Soit $x \in \mathbb{Z}_p$ tel que $Q(x) \in Q'(x)^2 p^k \mathbb{Z}_p$ et $Q'(x) \neq 0$. On pose $y = x \frac{Q(x)}{Q'(x)}$. Montrer que :
 - (a) $Q(y) \in p^{k+1}Q'(x)^2 \mathbb{Z}_p$;
 - (b) $y x \in p^k Q'(x) \mathbb{Z}_p$;
 - (c) $\operatorname{val}_{p}(Q'(y)) = \operatorname{val}_{p}(Q'(x))$;
 - (d) $y \in \mathbb{Z}_p$.
- 2. Soit $a_0 \in \mathbb{Z}_p$ tel que $Q(a_0) \in Q'(a_0)^2 p^k \mathbb{Z}_p$. Montrer qu'il existe un unique $a \in \mathbb{Z}_p$ tel que Q(a) = 0 et $a a_0 \in Q'(a_0) p^k \mathbb{Z}_p$.

Exercice 3. Dans cet exercice, on s'intéresse au cas p=2.

- 1. Montrer qu'on a un isomorphisme de groupes naturel $\mathbb{Z}_2^{\times} \simeq \{\pm 1\} \times (1 + 4\mathbb{Z}_2)$.
- 2. Montrer que le sous-groupe $1 + 4\mathbb{Z}_2$ de \mathbb{Z}_2^{\times} est sans torsion, c'est-à-dire que tous les éléments de $1 + 4\mathbb{Z}_2$ distincts de l'élément neutre sont d'ordre infini.
- 3. Soit $b \in \mathbb{Z}_2^{\times}$. Montrer que b est un carré de \mathbb{Z}_2 si, et seulement si, $b \in \mathbb{I} + 8\mathbb{Z}_2$.
- 4. En déduire que le groupe $\mathbb{Q}_2^{\times}/(\mathbb{Q}_2^{\times})^2$ est d'ordre 8.

Exercice 4.(Isomorphismes de corps)

- 1. Soit l un nombre premier. Montrer que \mathbb{Q}_l et \mathbb{Q}_p sont isomorphes (en tant que corps) si, et seulement si, l = p.
- 2. Soit $a \in \mathbb{Q}_p^{\times}$. Montrer que $a \in \mathbb{Z}_p^{\times}$ si, et seulement si, il existe une infinité d'entiers $n \in \mathbb{N}$ tels que $\exists u \in \mathbb{Z}_p, \ a^{p-1} = u^n$.
- 3. Soit $\varphi: \mathbb{Q}_p \to \mathbb{Q}_p$ un morphisme d'anneaux non nul. Montrer que φ est une isométrie.
- 4. En déduire le groupe $\operatorname{Aut}(\mathbb{Q}_p)$ des automorphismes de corps de \mathbb{Q}_p .

Exercice 5. Notons $\mu(\mathbb{Q}_p)$ l'ensemble des racines de l'unité de \mathbb{Q}_p^{\times} .

- 1. On suppose $p \neq 2$. Soit $n \in \mathbb{N}^*$ et ζ une racine n-ème de l'unité.
 - (a) On suppose que $\zeta \in 1 + p\mathbb{Z}_p$ et on écrit $\zeta = 1 + pt$. Montrer que t = 0 ou $p \mid n$.
 - (b) On suppose que n = p. Montrer que t = 0.
 - (c) Justifier que $\mu(\mathbb{Q}_p)$ est un sous-groupe de \mathbb{Z}_p^{\times} .
 - (d) En déduire que $\mu(\mathbb{Q}_p) = \mu_{p-1}$ est cyclique d'ordre p-1. Indication : on pourra considérer l'homomorphisme de groupes $\varphi : \mu(\mathbb{Q}_p) \to \mathbb{F}_p^{\times}$ obtenu par réduction modulo p.
- 2. On suppose désormais que p=2. Montrer que $\mu(\mathbb{Q}_2)=\{\pm 1\}$.

Exercice 6. On suppose $p \neq 2$. Soit $b \in p\mathbb{Z}_p$.

- 1. Montrer qu'il existe un unique $c \in p\mathbb{Z}_p$ tel que $2c + c^2 = b$. Montrer que de plus, on a $\operatorname{val}_p(b) = \operatorname{val}_p(c)$.
- 2. Qu'advient-il si on suppose p = 2 ou $b \in \mathbb{Z}_p^{\times}$.

Exercice 7.(Critère d'irréductibilité d'Eisenstein)

Soit
$$f = \sum_{k=0}^{d} a_k X^k \in \mathbb{Z}_p[X]$$
 tel que :

- $-a_d \not\equiv 0 \mod p\mathbb{Z}_p;$
- $-a_k \equiv 0 \mod p\mathbb{Z}_p \text{ pour tout } k \in [0, d-1];$
- $-a_0 \not\equiv 0 \mod p^2 \mathbb{Z}_p$.

Montrer que f est irréductible sur $\mathbb{Q}_p[X]$.