FEUILLE D'EXERCICES N°14 : RÉDUCTION DES ENDOMORPHISMES NORMAUX. ESPACES HERMITIENS ET GROUPE UNITAIRE.

Dans toute cette feuille $K = \mathbb{R}$ ou \mathbb{C} et V est un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$. On désigne par φ une forme sesquilinéaire (ou bilinéaire) non dégénérée sur V.

À faire

Exercice 1. (Endomorphismes adjoints)

On suppose que φ est hermitienne (ou bilinéaire symétrique si $\mathbb{K}=\mathbb{R}$). Soit u un endomorphisme autoadjoint pour φ .

- 1. Quelle est la forme de la matrice de u dans une base de diagonalisation de φ ?
- 2. Si W est un sous-espace stable de V pour u, montrer que W^\perp l'est aussi.
- 3. Réciproquement, pour un endomorphisme quelconque u de V stabilisant W et W^{\perp} , si φ n'a pas de vecteurs isotropes, montrer que u est hermitien si, et seulement si, $u_{|W}$ et $u_{|W^{\perp}}$ le sont.
- 4. En déduire que les symétries orthogonales sont toujours symétriques (au sens de φ).
- 5. Qu'en est-il des projecteurs orthogonaux?

Exercice 2. (Transvections unitaires)

On suppose que $\mathbb{K} = \mathbb{C}$ et que φ est hermitienne. Soit τ une transvection de V qu'on écrit sous la forme $\tau(x) = x + f(x)v$ avec $v \in V \setminus \{0\}$ et $f \in V^*$ telle que $f(v) \neq 0$. On suppose que $\tau \in \mathcal{U}(\varphi)$.

- 1. Montrer que v est isotrope.
- 2. Montrer qu'il existe $\lambda \in \mathbb{C}^*$ tel que $\forall x \in V, f(x) = \lambda \varphi(x, v)$.
- 3. Préciser l'hyperplan de τ et montrer que λ est imaginaire pur.

Exercice 3. Soit (V, φ) un \mathbb{C} -espace vectoriel hermitien et $u \in \operatorname{End}_{\mathbb{C}}(V)$ un endomorphisme hermitien.

- 1. Montrer que les valeurs propres de u sont réelles.
- 2. On les ordonnes $\lambda_1 \leq \cdots \leq \lambda_n$. Montrer les égalités suivantes :

$$\max_{1 \leq i \leq n} |\lambda_i| = \sqrt{\varphi(u,u)}, \qquad \lambda_1 = \inf_{\substack{x \in E \\ x \neq 0}} \frac{\varphi(u(x),x)}{\varphi(x,x)}, \qquad \lambda_n = \sup_{\substack{x \in E \\ x \neq 0}} \frac{\varphi(u(x),x)}{\varphi(x,x)}.$$

3. On note $\mathcal{H}(V)$ l'espace des endomorphismes hermitiens. Montrer que les application $\mathcal{H}(V) \to \mathbb{R}$ définies par $u \mapsto \lambda_1(u)$ et $u \mapsto \lambda_n(u)$ sont continues.

Exercice 4. Soit (V, φ) un \mathbb{C} -espace vectoriel hermitien.

- 1. Montrer que tout endomorphisme de V est trigonalisable en base orthonormée.
- 2. Soient $u, v \in \text{End}_{\mathbb{C}}(V)$ deux endomorphismes qui commutent. Montrer qu'il existe une base orthonormée de V qui cotrigonalise u et v.

Exercice 5. (Matrices normales)

On se place sur $V = \mathbb{C}^n$ muni du produit hermitien usuel $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i \overline{y_i}$. Soit $u \in \text{End}(V)$ et \mathcal{B} la base canonique de \mathbb{C}^n .

1. À quelle(s) condition(s) sur $Mat_{\mathcal{B}}(u)$, l'endomorphisme u est-il normal? hermitien? antihermitien?

On appellera matrices normales (resp. hermitiennes, antihermitiennes, unitaires, dont les ensembles sont notés $\mathcal{H}_n(\mathbb{C})$, $\mathcal{AH}_n(\mathbb{C})$, $\mathcal{U}_n(\mathbb{C})$) les matrices correspondantes.

- 2. Montrer qu'une matrice triangulaire supérieure est normale si, et seulement si, elle est diagonale.
- 3. Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{C})$ et $(\lambda_1, \dots, \lambda_n)$ les racines de χ_A . Montrer que A est normale si, et seulement si, $\sum_{1 \le i,j \le n} |a_{i,j}|^2 = \sum_{k=1}^n |\lambda_k|^2$.

Indication : on pourra introduire la norme de Schur $\|A\|^2 = \operatorname{tr}(AA^*)$.

- 4. Montrer que toute matrice hermitienne $A \in \mathcal{H}_n(\mathbb{C})$ s'écrit $A = P^{-1}DP$ avec $P \in \mathcal{U}_n(\mathbb{C})$ et D diagonale.
- 5. Montrer que si $A \in \mathcal{H}_n^{++}(\mathbb{C})$ et $B \in \mathcal{H}_n(\mathbb{C})$, alors AB est diagonalisable à valeurs propres réelles.

Exercice 6. (Décomposition polaire dans $GL_n(\mathbb{C})$)

- 1. Montrer que $\mathcal{U}_n(\mathbb{C})$ est un sous-groupe compact de $\mathrm{GL}_n(\mathbb{C})$.
- 2. Montrer que pour tout $H \in \mathcal{H}_n^{++}(\mathbb{C})$, il existe un unique $N \in \mathcal{H}_n^{++}(\mathbb{C})$ tel que $N^2 = H$.
- 3. Montrer que pour tout $M \in GL_n(\mathbb{C})$, il existe un unique couple (U, H) avec $U \in \mathcal{U}_n(\mathbb{C})$ et $H \in \mathcal{H}_n^{++}(\mathbb{C})$ tel que M = UH.
- 4. Montrer que l'application $U_n(\mathbb{C}) \times \mathcal{H}_n^{++}(\mathbb{C}) \to \mathrm{GL}_n(C)$ est un homéomorphisme. $(U,H) \mapsto UH$

Exercice 7. (Exponentielle de matrices)

Soit $A \in \mathcal{M}_n(\mathbb{C})$.

- 1. Montrer que si A est antisymétrique, alors $\exp(A)$ est orthogonale.
- 2. Montrer que si A est hermitienne, alors $\exp(iA)$ est unitaire.
- 3. Toute matrice unitaire $U \in \mathcal{U}_n(\mathbb{C})$ est-elle de la forme $U = \exp(iA)$?

Problèmes

Exercice 8. (Décomposition d'Iwasawa)

Soit $A \in \mathrm{GL}_n(\mathbb{C})$.

- 1. Montrer que si $A \in \mathcal{H}_n^{++}(\mathbb{C})$, alors il existe une matrice triangulaire supérieure T, uniquement déterminée par A, à coefficients diagonaux positifs, telle que $A = T^*T$.
- 2. Montre qu'en général, il existe un unique couple (U,T) avec $U \in \mathcal{U}_n(\mathbb{C})$ et T triangulaire supérieure à coefficients diagonaux positifs tel que A = UT.