Feuille d'exercices n°10 : Théorème spectral matriciel. Réduction simultanée et décomposition polaire. Normes matricielles.

Dans toute cette feuille $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On appelle rayon spectral d'une matrice $M \in \mathcal{M}_n(\mathbb{K})$ la quantité $\rho(M) = \max\{|\lambda|, \ \lambda \in \operatorname{sp}_{\mathbb{C}}(M)\}.$

À faire

Exercice 1. Soit $n \in \mathbb{N}^*$ et $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. Montrer que

1.
$$||M||_1 = \max_{1 \le j \le n} \left(\sum_{i=1}^n |m_{i,j}| \right)$$
 est la norme subordonnée à $|X|_1 = \sum_{i=1}^n |x_i|$;

2.
$$||M||_2 = \sqrt{\rho(M^*M)}$$
 est la norme subordonnée à $|X|_2 = \sqrt{\sum_{i=1}^n x_i^2}$;

3.
$$||M||_{\infty} = \max_{1 \leq i \leq n} \left(\sum_{j=1}^{n} |m_{i,j}| \right)$$
 est la norme subordonnée à $|X|_{\infty} = \max_{1 \leq i \leq n} |x_i|$.

Exercice 2. Soit $\|\cdot\|$ une norme matricielle (pas nécessairement subordonnée) sur $\mathcal{M}_n(\mathbb{C})$.

- 1. Montrer que $\rho(A) \leq \|A\|$.

 Indication : Considérer un vecteur propre V de A et la matrice par blocs $B = (V \mid 0 \quad \cdots \quad 0)$.
- 2. Montrer que si $A \in \mathrm{GL}_n(\mathbb{C})$ vérifie $\rho(A) = 1$, alors $\limsup_{k \to \infty} \|A^k\|^{\frac{1}{k}} \leqslant 1$. Indication : on pourra utiliser la décomposition de Dunford.
- 3. En déduire que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, le rayon spectral est donné par

$$\rho(A) = \lim_{k \to \infty} ||A^k||^{\frac{1}{k}}.$$

Exercice 3. (Un exemple de diagonalisation simultanée)

Soit $V = \mathbb{R}^2$. On considère les deux formes quadratiques q et q' sur V définies par

$$q(x,y) = \!\! x^2 + 2xy + 2y^2 \qquad \qquad q'(x,y) = \!\! x^2$$

- 1. Vérifier que q est définie positive.
- 2. Trouver une base \mathcal{B} de V qui est orthonormée pour q et orthogonale pour q'.
- 3. La matrice de passage de \mathcal{B} à la base canonique est-elle dans $\mathcal{O}_2(\mathbb{R})$?

Exercice 4. (Valeurs propres d'une matrice symétrique réelle)

On note $\langle \cdot, \cdot \rangle$ le produit scalaire usuel sur \mathbb{R}^n et $\| \cdot \|$ la norme associée. Soit $A \in \mathcal{S}_n(\mathbb{R})$. On ordonne les valeurs propres $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ de A (avec d'éventuelles répétitions).

- 1. Montrer que $\lambda_1 = \min_{\|x\|=1} \langle Ax, x \rangle$ et que $\lambda_n = \max_{\|x\|=1} \langle Ax, x \rangle$.
- 2. Pour tout $k \in [\![1,n]\!]$ et tout sous-espace vectoriel W de dimension k, montrer (en choisissant une base orthonormale adaptée) que $\lambda_k \leqslant \max_{\substack{x \in W \\ \|x\| = 1}} \langle Ax, x \rangle$ et que $\lambda_{n-k+1} \geqslant \min_{\substack{x \in W \\ \|x\| = 1}} \langle Ax, x \rangle$. En déduire que

$$\lambda_k = \min_{\substack{\dim W = k \\ \|x\| = 1}} \max_{\substack{x \in W \\ \|x\| = 1}} \langle Ax, x \rangle = \max_{\substack{\dim W = n-k+1 \\ \|x\| = 1}} \min_{\substack{x \in W \\ \|x\| = 1}} \langle Ax, x \rangle.$$

3. Montrer que les mineurs principaux de A sont strictement positifs si, et seulement si, A est définie positive.

Exercice 5. Décrire les orbites de l'action de $\mathcal{O}_n(\mathbb{R}) \times \mathcal{O}_n(\mathbb{R})$ sur $GL_n(\mathbb{R})$ définie par $(O_1, O_2) \cdot M = O_1MO_2^{-1}$. (Facultatif : faire de même sur $\mathcal{M}_n(\mathbb{R})$)

Exercice 6. Calculer l'ensemble des $A \in \mathcal{S}_n(\mathbb{R})$ tels que pour tout $B \in \mathcal{S}_n^+(\mathbb{R})$, on a $\operatorname{tr}(AB) \geq 0$.

Exercice 7. Pour deux matrices $A, B \in \mathcal{S}_n^+(\mathbb{R})$, montrer que $\det(A+B) \ge \det(A) + \det(B)$.

Exercice 8. On se place dans $\mathcal{M}_n(\mathbb{R})$ muni de la norme subordonnée à la norme euclidienne.

- 1. Montrer que le groupe $\mathcal{O}_n(\mathbb{R})$ est contenu dans la sphère unité.
- 2. Montrer que toute matrice symétrique positive $M \in \mathcal{S}_n^+(\mathbb{R})$ s'écrit comme combinaison convexe de matrices diagonales dont les coefficiens sont dans $\{\pm 1\}$.
- 3. En déduire que toute matrice de norme 1 est combinaison convexe de matrices orthogonales.
- 4. Montrer que si X, Y sont dans la boule unité, alors tr(XY) = n si, et seulement si, $XY = I_n$.
- 5. Montrer qu'en fait $\mathcal{O}_n(\mathbb{R})$ est l'ensemble des points extrémaux de la boule unité. Indication : pour $O = tA + (1-t)B \in \mathcal{O}_n(\mathbb{R})$ avec $||A||_2, ||B||_2 \leq 1$, étudier $\operatorname{tr}(OO^*)$.

Problèmes

Exercice 9. (Un peu de topologie)

- 1. Montrer que pour tout $n \geq 1$, le groupe $\mathcal{SO}_n(\mathbb{R})$ (muni de la topologie induite par la topologie d'espace vectoriel normé de $\mathcal{M}_n(\mathbb{R})$) est connexe par arcs.
- 2. Montrer que, pour tout $n \geqslant 3$, le groupe $\mathcal{SO}_n(\mathbb{R})$ est engendré par les retournements, et que les retournements sont tous conjugués dans le groupe.
- 3. Soit n et m deux entiers $\geqslant 1$ distincts. Montrer que $\mathcal{O}_n(\mathbb{R})$ et $\mathcal{O}_m(\mathbb{R})$ ne sont pas isomorphes. Indication: on pourra dénombrer les classes de conjugaison d'éléments d'ordre 2.
- 4. Montrer que $\mathcal{O}_n(\mathbb{R})$ (resp. $\mathcal{U}_n(\mathbb{C})$) est un sous-groupe compact maximal de $\mathrm{GL}_n(\mathbb{R})$ (resp. $\mathrm{GL}_n(\mathbb{C})$).
- 5. Montrer que l'application exponentielle induit une bijection de $\mathcal{S}_n(\mathbb{R})$ vers $\mathcal{S}_n^{++}(\mathbb{R})$.

Exercice 10. (Structure des groupes $SO_n(\mathbb{R})$) Soit $n \in \mathbb{N}^*$.

- 1. Montrer que $\mathcal{SO}_2(\mathbb{R})$ est isomorphe au groupe des nombres complexes de module 1.
- 2. Déterminer le centre de $\mathcal{O}_n(\mathbb{R})$ et celui de $\mathcal{SO}_n(\mathbb{R})$. On note $\mathcal{PSO}_n(\mathbb{R})$ le quotient de $\mathcal{SO}_n(\mathbb{R})$ par son centre.
- 3. On suppose ici que n=3.
 - (a) Soit $N \triangleleft SO_3(\mathbb{R})$ un sous-groupe distingué de $SO_3(\mathbb{R})$ non trivial. Démontrer qu'il contient un élément u tel que $-1 \leq \operatorname{tr} u < 3$.
 - (b) En considérant les commutateurs de u et d'un élément de $SO_3(\mathbb{R})$, montrer qu'il existe $t_0 < 3$ tel que, pour tout $t \in [t_0, 3]$, le groupe N contient un élément de trace t.
 - (c) En déduire que N contient un élément d'ordre fini pair, puis que N contient un retournement.
 - (d) En déduire que $\mathcal{SO}_3(\mathbb{R})$ est simple.
- 4. On suppose que $n \geq 5$.
 - (a) Pour tout sous-espace vectoriel $W \subset \mathbb{R}^n$, on considère $G_W = \{u \in \mathcal{SO}_n(\mathbb{R}), u_{|W} = \mathrm{id}_W\}$. À quel groupe G_W est-il isomorphe?
 - (b) Soit $u \in \mathcal{SO}_n(\mathbb{R})$ différent de \pm id. Montrer qu'il existe un élément $v \in \mathcal{SO}_n(\mathbb{R})$ tel que le commutateur c = [u, v] est différent de \pm id mais fixe un vecteur unitaire.
 - (c) Démontrer qu'il existe $w \in \mathcal{SO}_n(\mathbb{R})$ tel que le commutateur [c, w] est différent de \pm id mais fixe un sous-espace vectoriel de codimension inférieure à 2.
 - (d) En déduire la liste des sous-groupes distingués de $\mathcal{SO}_n(\mathbb{R})$ et la simplicité de $\mathcal{PSO}_n(\mathbb{R})$.
- 5. (cf. cours Géométrie) Montrer que le groupe $\mathcal{PSO}_4(\mathbb{R})$ est isomorphe à $\mathcal{SO}_3(\mathbb{R}) \times \mathcal{SO}_3(\mathbb{R})$. Indication : On pourra introduire l'algèbre \mathbb{H} des quaternions sur \mathbb{R} .

Exercice 11. (Décomposition d'Iwasawa)

Soit $A \in \mathrm{GL}_n(\mathbb{C})$.

- 1. Montrer que si $A \in \mathcal{H}_n^{++}(\mathbb{C})$, alors il existe une matrice triangulaire supérieure T, uniquement déterminée par A, à coefficients diagonaux positifs, telle que $A = T^*T$.
- 2. Montre qu'en général, il existe un unique couple (U,T) avec $U \in \mathcal{U}_n(\mathbb{C})$ et T triangulaire supérieure à coefficients diagonaux positifs tel que A = UT.