Feuille d'exercices n°20 : Coniques et Quadriques

Dans toute cette feuille, les espaces vectoriels ou affines sont sur \mathbb{R} et de dimension finie.

Sauf mention explicite du contraire, les coniques sont vues comme parties de \mathbb{R}^2 et les quadriques comme parties de \mathbb{R}^3 .

À faire

Exercice 1. Quelle est la nature de la conique :

- 1. $x^2 2xy + y^2 + \lambda(x y) = 0$ pour $\lambda \in \mathbb{R}$;
- 2. $x^2 + xy + y^2 = 1$?

Exercice 2. (Construction bifocale d'une ellipse)

Soient $F_1=(-2,-1)$ et $F_2=(2,2)$ deux points de \mathbb{R}^2 . Soit \mathcal{E} l'ensemble des points M de \mathbb{R}^2 tels que $d(M,F_1)+d(M,F_2)=6$.

- 1. Déterminer une équation de l'ensemble \mathcal{E} .
- 2. Déterminer la nature de la conique \mathcal{E} .
- 3. Déterminer une courbe paramétrée dont l'image est \mathcal{E} .
- 4. Dessiner \mathcal{E} .

Exercise 3. Soit $E = \{M \in \mathcal{M}_2(\mathbb{R}), \operatorname{tr}(M) = 0\}.$

- 1. Montrer que l'ensemble \mathcal{N} des éléments nilpotents de l'anneau $\mathcal{M}_2(\mathbb{R})$ est contenu dans E.
- 2. Combien l'espace $E \setminus \mathcal{N}$ a-t-il de composantes connexes? Indication : on pourra interpréter det comme une forme quadratique réelle.
- 3. Lesquelles correspondent à des matrices diagonalisables?

Exercice 4. (Hyperboloïde à une nappe)

On considère la quadrique H d'équation $x^2 + y^2 - z^2 = 1$.

- 1. Déterminer la nature de H et faire un dessin.
- 2. Soit $\theta \in \mathbb{R}$. Montrer que l'application $f_{\theta} : \mathbb{R} \to \mathbb{R}^3$ définie par $t \mapsto (\cos \theta t \sin \theta, \sin \theta + t \cos \theta, t)$ a pour image une droite contenue dans H.
- 3. Montrer que H est une réunion de droites deux à deux disjointes.
- 4. Déterminer une autre famille de droites deux à deux disjointes dont la réunion est encore H.
- 5. Est-ce que tout hyperboloïde à une nappe est réunion de droites?
- 6. Soit \mathcal{D} une droite non coplanaire à (Oz) et non contenue dans un plan parallèle à (Oxy). Soit R_{θ} la rotation d'angle θ autour de l'axe (Oz). Montrer que $\bigcup_{\theta \in \mathbb{R}} R_{\theta}(\mathcal{D})$ est un hyperboloïde à une nappe.

Exercice 5. Déterminer la nature et dessiner les quadriques suivantes :

- 1. $x^2 2y^2 + 2z^2 = 1$;
- 2. xy = 1;
- 3. $x^2 + y^2 + 4z^2 = 6$;
- 4. z 4xy = 0;
- 5. $z^2 4xy = 0$.

Exercice 6. Soit \mathcal{C} la quadrique d'équation $x^2 + y^2 - z^2 = 0$.

- 1. Déterminer la nature de $\mathcal C$ et faire un dessin.
- 2. Déterminer, en fonction de m, la nature de la conique obtenue par intersection de \mathcal{C} avec le plan d'équation z=m.
- 3. Déterminer, en fonction de a et m, la nature de la conique obtenue par intersection de \mathcal{C} avec le plan d'équation x + az = m.
- 4. Quelles sont les coniques qu'on peut obtenir comme intersection d'un plan de \mathbb{R}^3 avec \mathcal{C} ?

Problèmes

Exercice 7. (Ellipse de Steiner)

On identifie \mathbb{R}^2 avec \mathbb{C} . Soient $a, b, c \in \mathbb{C}$.

- 1. Montrer qu'il existe une ellipse tangente en les milieux des côtés du triangle de sommets a, b, c.

 Indication: Commencer par le cas d'un triangle équilatéral et effectuer une transformation affine.
- 2. Soient $u, v, w \in \mathbb{C}$. Montrer que l'ensemble $\mathcal{E} = \{\frac{1}{2}(ue^{i\theta} + ve^{-i\theta}), \theta \in \mathbb{R}\}$ est une ellipse.
- 3. Déterminer les foyers de \mathcal{E} .
- 4. Montrer que les racines de P' où P = (X a)(X b)(X c) sont les foyers de \mathcal{E} .

Exercice 8. (Par 5 points)

Soit \mathbb{A} un espace affine réel. Soient $X = \{A, B, C, D, E\}$ une partie de \mathbb{A} à 5 éléments.

- 1. On suppose que $\dim(\mathbb{A}) = 2$ et que les points de X sont 4 à 4 non alignés.
 - (a) Justifier l'existence d'une partie \mathcal{R} de X qui constitue un repère affine de \mathbb{A} .
 - (b) Rappeler la forme générale de l'équation en coordonnées barycentriques d'une conique $\mathcal C$ dans un repère affine $\mathcal R$.
 - (c) En exprimant également les points de $X \setminus \mathcal{R}$ en coordonnées barycentriques, déterminer un système d'équations vérifiant $X \subset \mathcal{C}$.
 - (d) Démontrer que ce système d'équations est de rang 1.
 - (e) En déduire qu'il existe une unique conique \mathcal{C} contenant X.
- 2. On suppose que $\dim(\mathbb{A}) = 3$. Soit \mathcal{Q} l'espace des formes quadratiques sur $\stackrel{\rightarrow}{\mathbb{A}}$.
 - (a) Justifier que pour $x \in \overrightarrow{\mathbb{A}}$, l'application $\mathcal{Q} \to \mathbb{R}$ définie par $q \mapsto q(x)$ est \mathbb{R} -linéaire.
 - (b) En déduire qu'il existe toujours une quadrique passant par X.
 - (c) À quelle(s) condition(s) cette quadrique est-elle unique?

Exercice 9. (Ellipsoïde de John-Loewner)

Soit $d \in \mathbb{N}^*$ et $V = \mathbb{R}^d$. Soit \mathcal{Q} l'espace vectoriel des formes quadratiques sur V. On note \mathcal{Q}^+ (resp. \mathcal{Q}^{++}) le sous-ensemble des formes quadratiques positives (resp. définies positives). Pour $q \in \mathcal{Q}$, on notera $\mathcal{E}_q = \{x \in V, \ q(x) \leq 1\}$. Soit K un compact de V. On note $\mathcal{A}(K) = \{q \in \mathcal{Q}^+, \ \mathcal{E}_q \supset K\}$.

- 1. Montrer que \mathcal{A} est non vide et convexe.
- 2. Montrer que $N(q) = \sup_{|x| \le 1} |q(x)|$ définit une norme sur Q.
- 3. Montrer que \mathcal{A} est fermé pour N.
- 4. On suppose que K est d'intérieur non-vide. Montrer que A est borné pour N.
- 5. Montrer que l'application $q \mapsto \det(q)$ admet un unique maximum sur $\mathcal{A}(K)$ lorsque K est d'intérieur non-vide.
- 6. En déduire que pour tout sous-groupe compact G de $\mathrm{GL}_d(\mathbb{R})$ il existe une unique forme quadratique $q \in \mathcal{Q}^{++}$ maximisant det et telle que G est un sous-groupe de $\mathcal{O}(q)$.
- 7. Justifier le titre de l'exercice et faire un dessin.