FEUILLE D'EXERCICES N°21 : SYMBOLE DE LEGENDRE ET RÉSIDUS QUADRATIQUES.

Dans toute cette feuille p est un nombre premier différent de 2.

Symboles de Legendre et réciprocité quadratique

Exercice 1. Pour p = 3, 5, 7, 11, 13, calculer $\left(\frac{a}{p}\right)$ pour tout $a \in [1, p-1]$.

Exercice 2. Pour q=3,11,17, établir pour n'importe quel nombre premier p quand est-ce que q est carré modulo p.

Exercice 3. Grâce à la loi de réciprocité quadratique, calculer $\left(\frac{13}{37}\right)$, $\left(\frac{45}{109}\right)$, $\left(\frac{11}{199}\right)$.

Les calculs faits dans cet exercice sont faisable à la main, mais ne le seraient pas pour les grands nombres : pourquoi?

Exercice 4. Soit p un nombre premier impair. Soit q une puissance de p et $\alpha \in \mathbb{F}_q^*$. On pose $\theta = \alpha + \alpha^{-1}$ et on note Φ_8 le 8-ième polynôme cyclotomique.

- 1. Montrer que $\theta^2 = 2 \iff \alpha$ est une racine de Φ_8 .
- 2. On suppose que \mathbb{F}_q est un corps de décomposition de Φ_8 sur \mathbb{F}_p et que α est une racine de Φ_8 . Montrer que $2^{\frac{p-1}{2}} = \frac{\theta^p}{\theta}$ et que $\alpha^p \in \{\pm \alpha^{\pm 1}\}$.
- 3. En déduire que $\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{si } p \equiv \pm 1 \mod 8 \\ -1 & \text{si } p \equiv \pm 3 \mod 8 \end{cases}$.

Symboles de Jacobi

On rappelle que pour $a, b \in \mathbb{Z}$ avec b impair positif, on définit le $symbole \ de \ Jacobi\left(\frac{a}{b}\right)$ par $\left(\frac{a}{b}\right) = \left(\frac{a}{p_1}\right)^{m_1} \cdots \left(\frac{a}{p_r}\right)^{m_r}$

$$\left(\frac{a}{b}\right) = \left(\frac{a}{p_1}\right)^{m_1} \cdots \left(\frac{a}{p_r}\right)^{m_r}$$

où la décomposition en facteurs premiers de b est $b=p_1^{m_1}\cdots p_r^{m_r}.$

Exercice 5. Soient $b \in \mathbb{N}^*$ impair et $a \in \mathbb{Z}$.

- 1. Montrer qu'on peut avoir $\left(\frac{a}{b}\right)=1$ même si a n'est pas un carré modulo b.
- 2. Montrer également que $\left(\frac{a}{b}\right) = 0$ si et seulement si a et b ne sont pas premiers entre eux.
- 3. Montrer que le symbole de Jacobi $\left(\frac{a}{b}\right)$ ne dépend que de la classe de congruence de a modulo b.

Exercice 6. Soient $b \in \mathbb{N}^*$ impair et $a \in \mathbb{Z}$. Montrer que le symbole de Jacobi $\left(\frac{a}{b}\right)$ vérifie les mêmes formules que le symbole de Legendre et est multiplicatif en b, autrement dit que :

$$\begin{pmatrix} \frac{aa'}{b} \end{pmatrix} = \begin{pmatrix} \frac{a}{b} \end{pmatrix} \cdot \begin{pmatrix} \frac{a'}{b} \end{pmatrix}
\begin{pmatrix} \frac{a}{bb'} \end{pmatrix} = \begin{pmatrix} \frac{a}{b} \end{pmatrix} \cdot \begin{pmatrix} \frac{a}{b'} \end{pmatrix}
\begin{pmatrix} \frac{-1}{b} \end{pmatrix} = (-1)^{\frac{b-1}{2}}
\begin{pmatrix} \frac{2}{b} \end{pmatrix} = (-1)^{\frac{b^2-1}{8}}
\begin{pmatrix} \frac{a}{b} \end{pmatrix} = (-1)^{\frac{(a-1)(b-1)}{4}} \begin{pmatrix} \frac{b}{a} \end{pmatrix}$$

où a est supposé impair positif dans la dernière formule.

Exercice 7.

1. Quelle est la complexité de l'algorithme suivant calculant le symbole de Jacobi $\left(\frac{a}{b}\right)$?

Partant de a et b avec b impair positif, on utilise ε la variable de stockage, initialisée à $\varepsilon:=1$:

- Si b = 1, on renvoie ε .
- Réduction 1 : si a = bq + r est la division euclidienne de a par b, on a simplement à calculer $\left(\frac{r}{b}\right)$ (si r = 0, on termine l'algorithme en renvoyant 0), donc on remplace a par r, de sorte que a < b.
- Réduction 2 : Si $a = 2^k a'$ avec a' impair, on multiplie ε par $(-1)^{\frac{b^2-1}{8}}$ à la puissance k puis on remplace a par a', de sorte que a est impair.
- On multiplie ε par $(-1)^{(a-1)(b-1)/4}$ (autrement dit 1 sauf si a et b sont congrus à 3 modulo 4), et on échange les variables a et b, autrement dit on calcule $\left(\frac{b}{a}\right)$. On recommence à la première étape.
- 2. Calculer ainsi les symboles de Jacobi

$$\left(\frac{57}{189}\right), \left(\frac{314}{701}\right), \left(\frac{111}{533}\right).$$

Racines carrées modulo n

Exercice 8. Résoudre l'équation $x^2 = 2$ dans $\mathbb{Z}/5831\mathbb{Z}$.

Exercice 9.

- 1. Soit $\alpha \in \mathbb{N}^*$ et $a \in \mathbb{Z}$ impair. Montrer que le nombre de solutions de l'équation $x^2 = a$ dans $\mathbb{Z}/2^{\alpha}\mathbb{Z}$ est égal à :
 - 1 si $\alpha=1$
 - $-2 \operatorname{si} \alpha = 2 \operatorname{et} a \equiv 1 \mod 4$
 - 4 si $\alpha \ge 3$ et $a \equiv 1 \mod 8$
 - 0 dans tous les autres cas.
- 2. Soit $n \in \mathbb{N}^*$ et $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Déterminer en fonction de a et n, le nombre de solutions de $x^2 = a$ dans $\mathbb{Z}/n\mathbb{Z}$.

Exercices divers

Exercice 10. Montrer que pour tout premier impair p, au moins un entier parmi -1, 2 et -2 est un carré modulo p. En déduire que le polynôme $X^4 + 1$ est réductible modulo tout premier p.

Exercice 11. (Polya-Vinogradov)

1. Pour tout $k \in \mathbb{Z}$, montrer que

$$\left(\frac{k}{p}\right) = \frac{1}{p} \sum_{a,b=0}^{p-1} \left(\frac{b}{p}\right) e^{\frac{2i\pi a(b-k)}{p}}.$$

2. En déduire (avec la notation de somme de Gauss G(a) comme plus haut) que pour tout ensemble I d'entiers fini, on a

$$\sum_{k\in I} \left(\frac{k}{p}\right) = \frac{1}{p} \sum_{a=0}^{p-1} G(a) \sum_{k\in I} e^{-\frac{2i\pi ak}{p}}.$$

3. En déduire que si I est un intervalle fini d'entiers, on a l'inégalité de Polya-Vinogradov

$$\left| \sum_{k \in I} \left(\frac{k}{p} \right) \right| \le \sqrt{p} \log p.$$

4. Conclure que pour tout nombre premier impair p, le premier entier naturel qui n'est pas un carré modulo p est inférieur à $\sqrt{p} \log p$.

2