FEUILLE D'EXERCICES N°6 : EXTENSIONS DE CORPS

Dans toute cette feuille K est un corps.

À faire

Exercice 1. Donner les polynômes minimaux des nombres complexes suivants :

$$\cos\left(\frac{2\pi}{9}\right), \qquad \sqrt[3]{7} + \sqrt{2}, \qquad i + \sqrt{2}, \qquad e^{\frac{i2\pi}{5}}$$

sur \mathbb{Q} , sur $\mathbb{Q}(i)$, sur $\mathbb{Q}(\sqrt{5})$.

Exercice 2. (Exemples d'extensions quadratiques)

- 1. Montrer que les polynômes $P = X^2 + 1$ et $Q = X^2 + X + 1$ sont irréductibles sur \mathbb{R} .
- 2. Montrer que les corps de rupture des polynômes P et Q sur $\mathbb R$ sont isomorphes et décrire l'isomorphisme entre ces corps.
- 3. Montrer que -1 n'est pas un carré dans $\mathbb{Q}(j\sqrt[3]{2})$.

Exercice 3.

- 1. Calculer les polynômes minimaux sur \mathbb{Q} de \sqrt{d} pour tout entier $d \in \mathbb{Z}$ (on choisit une racine carrée de d dans \mathbb{C}), et en déduire les degrés des extensions $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$. Faire de même pour d'autres racines n-ièmes d'entiers de votre choix.
- 2. Montrer que l'extension \mathbb{R}/\mathbb{Q} est transcendante mais n'est pas purement transcendante.
- 3. Soit L/K une extension algébrique et $\sigma:L\to L$ un morphisme de corps K-linéaire. En raisonnant sur toutes les racines des polynômes minimaux d'éléments de L, montrer que σ est automatiquement un automorphisme.

Exercice 4. (Racines en caractéristique positive)

Soit K un corps de caractéristique p premier et L un corps algébriquement clos contenant K.

- 1. Montrer que tout élément de K a exactement une racine p-ième dans L.
- 2. Déterminer le nombre maximal de racines n-ièmes de l'unité dans K.

Exercice 5. (Extensions algébriques, sous-extensions et degré)

- 1. Soit L une extension de K et x, y algébriques sur K de degrés respectifs m et n premiers entre eux. Montrer que [K(x,y):K]=mn.
- 2. Soit L/K une extension de corps de degré m et $P \in K[X]$ un polynôme irréductible de degré n. Montrer que si m et n sont premiers entre eux, alors P est irréductible sur L.
- 3. Soient M/L et L/K deux extensions de corps. Montrer que si L/K est algébrique, tout $x \in M$ algébrique sur L est également algébrique sur K.

Exercice 6. (Nombres de Liouville)

On appelle nombre de Liouville tout nombre réel α irrationnel tel que pour tout $d \geq 2$ et tout C > 0, il existe un rationnel $\frac{a}{b}$ tel que $0 < \left|\alpha - \frac{a}{b}\right| < Cb^{-d}$.

- 1. Montrer que tout nombre de Liouville est transcendant.
- 2. Donner un exemple direct de nombre de Liouville.
- 3. Montrer que l'ensemble des nombres de Liouville est de mesure de Lebesgue nulle, mais que l'ensemble des réels transcendants est de mesure pleine.

Exercice 7. (Caractérisation des extensions finies monogènes)

Soit K un corps infini.

- 1. Soient $L = K[\alpha]$ une extension finie monogène de K et P le polynôme minimal de α sur K. Exhiber une application injective de l'ensemble des sous-extensions de L/K dans l'ensemble des diviseurs unitaires de P dans L[X].
- 2. Soit L/K une extension finie. On suppose que l'ensemble des sous-extensions de L/K est fini.
 - (a) Soit $\alpha, \beta \in L$. Montrer que $K(\alpha, \beta)/K$ est monogène. Indication: On pourra considérer les sous-extensions de la forme $K(\alpha + \lambda \beta)$ avec $\lambda \in K$.
 - (b) En déduire que L/K est monogène.

Exercice 8. (Extensions monogènes infinies)

Soit K un corps quelconque.

- 1. Montrer que l'extension K(X)/K est purement transcendante.
- 2. Montrer que toute extension purement transcendante de K engendrée par un élément est isomorphe à K(X).
- 3. Montrer que pour toute fraction rationnelle non constante R = P/Q avec $P, Q \in K[X]$ premiers entre eux, l'extension K(X)/K(R) est finie et préciser son degré en fonction de ceux de P et Q.
- 4. En déduire que l'extension K(R)/K est infinie et que R est transcendante sur K.

Exercice 9. (Automorphismes du corps des fractions rationnelles)

- 1. Soit K un corps et L = K(X) le corps des fractions rationnelles sur K.
 - (a) Soit $\sigma \in \operatorname{Aut}_K(L)$. Montrer qu'il existe quatre éléments $a, b, c, d \in K$ tels que $\sigma(X) = \frac{aX+b}{cX+d}$.
 - (b) Montrer que $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K)$.
 - (c) En déduire un isomorphisme de groupes $\operatorname{Aut}_K(L) \simeq \operatorname{PGL}_2(K)$.
- 2. Montrer que $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{R}) = \{ \operatorname{id}_{\mathbb{R}} \}.$
- 3. Montrer que $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{R}(X)) \simeq \operatorname{PGL}_2(\mathbb{R})$. Indication : On pourra caractériser \mathbb{R}_+ dans $\mathbb{R}(X)$ comme l'ensemble des éléments qui admettent une racine n-ème pour tout $n \in \mathbb{N}^*$.

Exercice 10. (Automorphismes d'un corps fini)

Soit $K = \mathbb{F}_q$ un corps fini à $q = p^m$ éléments avec $p \in \mathbb{N}$ premier. On désigne par $F : K \to K$ le morphisme de Frobenius donné par $x \mapsto x^p$.

- 1. Justifier que F est un automorphisme de \mathbb{F}_q d'ordre m vu comme élément de $\mathrm{Aut}(\mathbb{F}_q)$.
- 2. Soit $P \in \mathbb{F}_q[X]$ un polynôme irréductible de degré d et D le corps de décomposition de P sur \mathbb{F}_q . Soit α une racine de P dans D.
 - (a) Montrer que pour tout n, l'élément $\alpha^{q^n} \in D$ est racine de P.
 - (b) Montrer que $\mathbb{F}_q[\alpha]$ est un corps fini à q^d éléments.
 - (c) Montrer que les α^{q^i} pour $i \in [0, m-1]$ sont deux à deux distincts. Indication : on pourra observer que pour $1 \le e \le d$, l'ensemble des racines de $X^{q^e} - X$ forme un sous-corps de D.
- 3. Montrer que $\operatorname{Aut}(\mathbb{F}_{p^m})$ est cyclique d'ordre m engendré par F.

 Indication : on pourra considérer le polynôme minimal d'un générateur de \mathbb{F}_q^{\times} .

Exercice 11. (Corps de décomposition)

1. Donner les corps de décomposition, et leurs degrés, sur $\mathbb Q$ des polynômes suivants :

$$X^2 + X + 1$$
, $(X^3 - 2)(X^2 - 2)$, $(X^5 - 7)$.

2. Montrer que le degré du corps de décomposition d'un polynôme de degré n divise n!.

Exercice 12. (Corps parfaits et polynômes séparables)

Soit K un corps de caractéristique p et $P \in \mathbb{K}[X]$ un polynôme unitaire. Un polynôme $P \in K[X]$ est dit séparable s'il est à racines simples dans son corps de décomposition.

- 1. Montrer que P est séparable si et seulement si P et P' sont premiers entre eux.
- 2. Montrer que les corps finis et les corps algébriquement clos sont parfaits.
- 3. Montrer que si p est premier et si P'=0, alors il existe $Q \in K[X]$ tel que $P=Q(X^p)$.
- 4. Montrer que si K est parfait et P est irréductible, alors P est séparable.
- 5. Soit $L = \mathbb{F}_p(T)$ et K l'image du morphisme de Frobenius F_L . Montrer que le polynôme $X^p T^p \in K[X]$ est irréductible sur K mais pas sur L et qu'il n'est pas séparable.
- 6. Montrer que si K est imparfait de caractéristique $\operatorname{car}(K) = p$ premier, alors tout polynôme irréductible $P \in K[X]$ est séparable si et seulement s'il ne s'écrit pas $P = Q(X^p)$ avec $Q \in K[X]$.

Problèmes

Exercice 13. (Construction de la clôture algébrique)

La démonstration de l'existence et de l'unicité est proposée en exercice, comme suit : On fixe un corps K quelconque.

- 1. Soit S l'ensemble des polynômes irréductibles de K[X]. On pose $A = K[(X_P)_{P \in S}]$ et I l'idéal de A engendré par les $P(X_P), P \in S$. Montrer que $I \neq A$.
- 2. En prenant \mathfrak{m} un idéal maximal de A contenant I, montrer que dans l'extension $K_1 = A/\mathfrak{m}$ de K, tout polynôme irréductible de K[X] a une racine.
- 3. Itérer le procédé pour construire une suite d'extensions de corps

$$K \subset K_1 \subset K_2 \subset \cdots$$

et montrer que $K_{\infty} = \bigcup_{n \in \mathbb{N}} K_n$ est un corps algébriquement clos.

- 4. En posant \overline{K} l'ensemble des éléments de K_{∞} algébriques sur K, montrer que \overline{K} est bien une clôture algébrique de K.
- 5. Pour toute extension algébrique L de K, montrer qu'il existe un plongement de L dans \overline{K} prolongeant l'inclusion $K \subset \overline{K}$. En déduire que la clôture algébrique de K est unique à isomorphisme près.
- 6. Montrer que pour toute extension finie L de \overline{K} , il existe au plus [L:K] plongements K-linéaires distincts de L dans \overline{K} .
- 7. On note $[L:K]_s$ le nombre de ces plongements. Montrer que pour une extension finie M de L, on a $[M:K]_s = [M:L]_s[L:K]_s$ (utile pour l'exercice sur les extensions séparables).

Exercice 14. (Extensions séparables)

Un élément α algébrique sur K est dit séparable sur K si son polynôme minimal sur K est séparable. Une extension algébrique L/K est dite séparable si tous ses éléments sont séparables sur K.

- 1. Montrer qu'une extension finie L/K est séparable si et seulement s'il y a exactement [L:K] K-plongements distincts de L dans \overline{K} .
- 2. Montrer qu'une extension finie L/K est séparable si et seulement si elle est engendrée par des éléments séparables sur K.
- 3. Montrer qu'un corps K est parfait si et seulement si toute extension finie de K est séparable.

Exercice 15. (Extension normale)

Une extension L de K est dite normale si tout polynôme irréductible de K[X] ayant une racine dans L est scindé sur L.

- 1. Si $P \in K[X]$, si L est le corps de décomposition de P sur K et K' une extension intermédiaire entre K et L, montrer que le corps de décomposition de P sur K' est encore L.
- 2. En déduire que tout corps de décomposition sur K est une extension normale de K.
- 3. Réciproquement, montrer que toute extension normale finie de K est un corps de décomposition sur K.
- 4. Montrer que L/K finie est normale si et seulement s'il y a autant d'automorphismes de L sur K que de K-plongements de L dans \overline{K} .

Exercice 16. (Clôture algébrique d'un corps fini)

Soit p un nombre premier et $K = \mathbb{Z}/p\mathbb{Z}$. Soit L un corps algébriquement clos contenant K.

- 1. Montrer que tout $x \in L^*$ est une racine de l'unité.
- 2. Soit $m \in \mathbb{N}^*$. Montrer que l'ensemble des points fixes dans L de $x \mapsto x^{q^m}$ est un sous-corps fini de L à q^m éléments. On le note \mathbb{F}_{q^m} .
- 3. Montrer que pour tout m < n, on a une extension de corps $\mathbb{F}_{q^{n!}}/\mathbb{F}_{q^{m!}}$ mais qu'on n'a pas nécessairement d'extension de corps $\mathbb{F}_{q^n}/\mathbb{F}_{q^m}$.
- 4. Montrer que $L = \bigcup_{n \in \mathbb{N}^*} \mathbb{F}_{p^{n!}}$ peut naturellement être muni d'une structure de corps qui en fait une clôture algébrique de \mathbb{F}_p .
- 5. Où a-t-on utilisé implicitement l'axiome du choix dans cette construction?

Exercice 17. (Résultant et polynômes minimaux)

Soit A un anneau commutatif unitaire et

$$P = \sum_{k=0}^{m} a_k X^k, \quad Q = \sum_{\ell=0}^{n} b_{\ell} X^{\ell} \in A[X]$$

des polynômes de degrés respectifs m et n supérieurs ou égaux à 1. On appelle résultant de P et Q, noté $\operatorname{Res}(P,Q)$, le déterminant de la matrice de taille (m+n) suivante :

$$\begin{pmatrix} a_m & 0 & \cdots & 0 & b_n & 0 & \cdots 0 \\ a_{m-1} & a_m & \ddots & \vdots & \vdots & b_n & \ddots & \vdots \\ \vdots & a_{m-1} & \ddots & 0 & \vdots & & \ddots & 0 \\ \vdots & \vdots & \ddots & a_m & b_1 & & b_n \\ a_0 & & & a_{m-1} & b_0 & \ddots & \vdots & \vdots \\ 0 & \ddots & & \vdots & 0 & \ddots & b_1 & \vdots \\ \vdots & \ddots & a_0 & \vdots & \vdots & \ddots & b_0 & b_1 \\ 0 & \cdots & 0 & a_0 & 0 & \cdots & 0 & b_0 \end{pmatrix}$$

- 1. Montrer que $\operatorname{Res}(P,Q)$ est le déterminant de l'endomorphisme de A-modules libres de type fini $(S,T)\mapsto PS+QT$ de $A_{n-1}[X]\times A_{m-1}[X]$ à $A_{m+n-1}[X]$ pour certains choix naturels de base de ces espaces.
- 2. Comparer Res(Q, P) et Res(aP, bQ) à Res(P, Q) si a et b ne sont pas diviseurs de zéro.
- 3. Montrer que si $\varphi: A \to B$ est un morphisme d'anneaux tel que $\deg \varphi(P) = m$ et $\deg \varphi(Q) = n$, alors $\operatorname{Res}(\varphi(P), \varphi(Q)) = \varphi(\operatorname{Res}(P, Q))$ pour le morphisme induit $\varphi: A[X] \to B[X]$ (terme à terme sur les coefficients). Que peut-on dire si $\deg \varphi(P) = m$ et $\deg \varphi(Q) < n$?
- 4. On suppose ici que A est un anneau intègre et $K=\operatorname{Frac}(A)$. Montrer que $\operatorname{Res}(P,Q)$ est le déterminant de la multiplication par \overline{Q} dans K[X]/(P). En déduire que pour tous polynômes non constants $P,Q,R\in A[X]$, on a l'égalité $\operatorname{Res}(P,QR)=\operatorname{Res}(P,Q)\operatorname{Res}(P,R)$. Montrer que si $P=a\prod_{i=1}^m(X-\alpha_i),\quad Q=b\prod_{j=1}^n(X-\beta_j),$ alors $\operatorname{Res}(P,Q)=a^nb^m\prod_{i=1}^m\prod_{j=1}^n(\alpha_i-\beta_j).$
- 5. Si Q+PS est un polynôme de degré au plus n, donner une relation entre Res(P,Q) et Res(P,Q+PS). En déduire un algorithme efficace de calcul du résultant.
- 6. Montrer que sur un anneau factoriel A, on a Res(P,Q)=0 si, et seulement si, les polynômes P et Q n'ont pas de facteur commun non constant.
- 7. Soit K un corps et $A=K[X_1,\cdots,X_{n-1}]$. Soient $P,Q\in K[X_1,\cdots,X_n,X]$, on note $\mathrm{Res}_X(P,Q)$ le résultant de P et Q vus comme polynômes dans A[X]. C'est donc un polynôme en n-1 variables sur K. Montrer que pour tout $(x_1,\cdots,x_{n-1})\in K^{n-1}$, on a $(\mathrm{Res}_X(P,Q))(x_1,\cdots,x_{n-1})=0\Longleftrightarrow \exists x\in\overline{K}, P(x_1,\cdots,x_{n-1},x)=Q(x_1,\cdots,x_{n-1},x)=0$ à moins que les coefficients dominants de P ou Q soient nuls en (x_1,\cdots,x_{n-1}) .
- 8. On va maintenant appliquer ce résultat aux nombres algébriques : si $\alpha \in \overline{\mathbb{Q}}$ et $\beta \in \overline{\mathbb{Q}}$ sont deux nombres algébriques de polynômes minimaux respectifs P et Q, considérer $\mathrm{Res}_T(P(X), Q(T-X))$, $\mathrm{Res}_T(P(X), X^{\deg Q}Q(T/X))$. En déduire des polynômes annulateurs de $\alpha + \beta$ et $\alpha\beta$.
- 9. Faire de même pour trouver un polynôme annulateur de $R(\alpha)$ avec $R \in \mathbb{Q}[X]$.
- 10. Appliquer cette méthode à $\sqrt{2} + \sqrt{3}, 2\sqrt{7} j, \sqrt[5]{3} + i$.

Pour aller plus loin

Exercice 18. (Théorème de l'élément primitif)

Le théorème de l'élément primitif dit que pour toute extension finie séparable L/K, il existe $\alpha \in L$ tel que $L = K[\alpha]$ (autrement dit, on peut engendrer L par un seul élément et non plusieurs). Cet exercice propose deux démonstrations du théorème.

1. Montrer le théorème si L et K sont des corps finis.

On suppose maintenant qu'ils sont infinis. Voici une première démonstration plus constructive.

2. Montrer qu'il suffit de prouver le théorème pour $L = K[\alpha, \beta]$ avec certains éléments α, β , ce qu'on suppose pour la suite.

On pose $\alpha_1 = \alpha, \dots, \alpha_n$ les conjugués (distincts) de α dans \overline{K} et β_1, \dots, β_m les conjugués (distincts) de β dans \overline{K} . On choisit $\lambda \in K$ différent des $\frac{\alpha_1 - \alpha_i}{\beta_1 - \beta_j}$ pour tous $1 < i \le n, 1 < j \le m$. On va montrer que $\Theta = \alpha + \lambda \beta$ est primitif (i.e $L = K[\Theta]$).

- 3. On note P et Q les polynômes minimaux respectifs de α et β sur K. Montrer que le polynôme minimal de β sur $K[\Theta]$ divise à la fois Q et $P(\Theta \lambda X)$.
- 4. En déduire qu'il est de degré 1 grâce à notre choix de λ (et car L/K est séparable), donc que $K[\beta] \subset K[\Theta]$.
- 5. Conclure.

Voici une autre démonstration plus théorique. Supposons L/K séparable de degré n, et notons $\sigma_1, \dots, \sigma_n$ les plongements distincts de L dans \overline{K} .

- 6. Montrer que pour $1 \le i < j \le n$ l'ensemble $V_{i,j} = \{x \in L, \sigma_i(x) = \sigma_j(x)\}$ est un K-espace vectoriel.
- 7. Montrer que la réunion des $V_{i,j}$ ne peut pas être tout L si L est infini.
- 8. En déduire le théorème de l'élément primitif dans ce cas.

Voici une application du théorème :

9. Déduire du théorème de l'élément primitif qu'une extension séparable finie L/K n'a qu'un nombre fini de sous-extensions.

Exercice 19. (Extensions galoisiennes)

Une extension finie L/K est dite galoisienne si elle est à la fois normale et séparable.

- 1. Montrer que L/K finie est galoisienne si et seulement si elle a exactement [L:K] K-automorphismes : on note le groupe des automorphismes $\operatorname{Gal}(L/K)$, et on l'appelle groupe de Galois de L sur K.
- 2. Montrer que L/K finie est galoisienne si et seulement si c'est le corps de décomposition d'un polynôme séparable sur K.
- 3. En déduire que si $K \subset K' \subset L$ et L/K est galoisienne, alors L/K' est galoisienne et $\operatorname{Gal}(L/K') = \{\sigma \in \operatorname{Gal}(L/K), \sigma_{|K'} = \operatorname{Id}_{K'}\}.$
- 4. Trouver un contre-exemple pour K'/K.
- 5. (Lemme d'Artin) Pour L un corps et G un groupe fini d'automorphismes de L, montrer que L/L^G est galoisienne de groupe de Galois G.
- 6. (Correspondance de Galois) Supposons que L/K est finie galoisienne. Montrer que les applications $H \mapsto L^H$ et $K' \mapsto \operatorname{Gal}(L/K')$ sont des bijections réciproques entre les sous-groupes de $\operatorname{Gal}(L/K)$ et les sous-extensions de L/K.
- 7. Comment caractériser les sous-extensions telles que K'/K est encore de Galois?
- 8. Montrer que toute extension finie de corps finis est galoisienne et décrire son groupe de Galois.
- 9. Pour $n \geq 1$, montrer que l'extension $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ est galoisienne et que son groupe de Galois est isomorphe à $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 10. Montrer que toute extension de degré 2 entre deux corps de caractéristique différente de 2 est galoisienne.

Exercice 20. (Une famille de groupes de Galois sur \mathbb{Q})

Le problème de Galois inverse est de déterminer les groupes finis G qui sont groupes de Galois sur \mathbb{Q} , c'est-à-dire qu'il existe une extension finie galoisienne E/\mathbb{Q} dont le groupe de Galois $\mathrm{Aut}(E)$ est isomorphe à G.

Soit p un nombre premier. On se propose ici de montrer que le groupe \mathfrak{S}_p est groupe de Galois sur \mathbb{Q} .

- 1. On pose $P_0 = (X^2 + 1) \cdot \prod_{l=1}^{p-2} (X + l) \in \mathbb{Z}[X]$ et $Q = X^p P_0 p \in \mathbb{Z}[X]$. Pour $k \geq 1$, on pose
 - $P_k = (kp^2 + 1)P_0 + Q$. Pour toute racine r de P_0 , on note Γ_r le bord du disque dans $\mathbb C$ de centre r et de rayon $\frac{1}{3}$. On pose $\Gamma = \bigsqcup \Gamma_r$.
 - (a) Montrer que P_k est irréductible.
 - (b) Montrer que $\forall z \in \Gamma, \left|\frac{P_k(z)}{kp^2+1} P_0(z)\right| < |P_0(z)|$ pour k assez grand.
 - (c) En déduire qu'il existe un polynôme $P \in \mathbb{Q}[X]$ irréductible de degré p ayant p-2 racines réelles et 2 racines complexes non réelles comptées avec multiplicité.
- 2. Soit $P \in \mathbb{Q}[X]$ un tel polynôme et S l'ensemble de ses racines. Soit E le corps de décomposition de P sur \mathbb{Q} et $G = \operatorname{Aut}_{\mathbb{Q}}(E)$.
 - (a) Montrer que G agit fidèlement sur S.
 - (b) Montrer que G agit transitivement sur S.
 - (c) Montrer que G s'injecte dans \mathfrak{S}_p et que p divise l'ordre de G.
 - (d) Montrer que G contient un élément d'ordre 2.
 - (e) En déduire que G est isomorphe à \mathfrak{S}_p .
- 3. On se limite au cas p=2. Montrer qu'il existe une infinité d'extensions, deux à deux non isomorphes de \mathbb{Q} de groupe de Galois isomorphe à $\mathfrak{S}_2 \simeq \mathbb{Z}/2\mathbb{Z}$.

Exercice 21. (Quelques exemples de clôtures algébriques)

- 1. Soit K un corps et Ω un corps algébriquement clos contenant K. On définit le sous-ensemble $L = \{x \in \Omega, x \text{ est algébrique sur } K\}.$
 - (a) Montrer que L est un corps algébriquement clos.
 - (b) Montrer que L/K est une extension algébrique.
 - (c) En déduire que L est une clôture algébrique de K.
- 2. Montrer que toute clôture algébrique de \mathbb{Q} est dénombrable et en déduire l'existence d'une infinité d'éléments de \mathbb{R} linéairement indépendants transcendants sur \mathbb{Q} .
- 3. (Très difficile) Soit $K = \mathbb{C}(X)$ le corps des fractions rationnelles de \mathbb{C} . Une série de Puiseux est une famille $(a_r)_{r\in\mathbb{Q}}\in\mathbb{C}^\mathbb{Q}$ telle que l'ensemble des indices $r\in\mathbb{Q}$ pour lesquels $a_r\neq 0$ est contenu dans ensemble de la forme $\left\{\frac{k}{n},\ k\geq k_0\right\}$ avec $k_0\in\mathbb{Z}$ et $n\in\mathbb{N}$.
 - (a) Montrer que l'ensemble des séries de Puiseux peut être muni d'une structure d'anneau pour laquelle tout élément de $\mathbb{C}(X)$ se réalise comme une série de Puiseux $(a_r)_{r\in\mathbb{Q}}$ avec des termes a_r non nuls seulement si $r\in\mathbb{Z}$.
 - (b) Montrer que l'ensemble des séries de Puiseux est algébriquement clos.
 - (c) Montrer qu'en fait, l'ensemble des séries de Puiseux est la clôture algébrique de $\mathbb{C}(X)$.