Applications de l'immeuble de Bruhat-Tits en théorie des représentations

Anne-Marie Aubert

Institut de Mathématiques de Jussieu – Paris Rive Gauche C.N.R.S.. Sorbonne Université and Université Paris Cité

Journées Immeubles et Applications

Laboratoire de Mathématiques et Applications, UMR 7348 du CNRS Université de Poitiers 1er Décembre 2023 Soient F un corps local non archimédien et G le groupe des F-points d'un groupe algébrique réductif connexe. Nous dirons que G est un groupe réductif p-adique.

Définition

Un immeuble euclidien est un complexe simplicial \mathcal{B} de dimension finie (muni d'une métrique), équipé d'une famille \mathfrak{F} de sous-espaces de \mathcal{B} satisfaisant aux axiomes suivants:

- (1) Tout $\mathcal{F} \in \mathfrak{F}$ est un complexe de Coxeter dans un espace euclidien \mathbb{R}^{ℓ}
- (2) Pour tous $\mathcal{F}_1, \mathcal{F}_2 \in \mathfrak{F}$, il existe une isométrie de \mathcal{F}_1 sur \mathcal{F}_2 qui fixe $\mathcal{F}_1 \cap \mathcal{F}_2$ point par point
- (3) Tout simplexe de codimension 1 est une face d'au plus trois simplexes de dimension maximale
- (4) Pour tous $x, y \in \mathcal{B}$, il existe $\mathcal{F} \in \mathfrak{F}$ tel que $\{x, y\} \subset \mathcal{F}$.

Remarque

Le complexe de Coxeter d'un groupe de Coxeter (W,S) est l'ensemble partiellement ordonné des classes de la forme wW_I , où $I\subset S$ et $W_I=\langle I\rangle$, ordonné par inclusion inversée.

Théorème [Tits]

L'immeuble de Bruhat-Tits $\mathcal{B}(G)$ d'un groupe réductif p-adique G est un immeuble euclidien. Réciproquement, tout immeuble euclidien de dimension au moins 4 est l'immeuble de Bruhat-Tits d'un groupe réductif p-adique.

Pour tout point x de $\mathcal{B}(G)$, Bruhat et Tits ont construit un sous-groupe compact $G_{x,0}$ de G, appelé sous-groupe parahorique

Moy et Prasad ont défini des filtrations de $G_{x,0}$ par des sous-groupes distingués

$$G_{x,0} \rhd G_{x,r_1} \rhd G_{x,r_2} \rhd G_{x,r_3} \rhd \cdots$$

où $0 < r_1 < r_2 < r_3 < \cdots$ sont des nombres réels qui dépendent de x.

Les filtrations de Moy et Prasad de $G_{x,0}$ sont une combinaison de filtrations pour divers groupes radiciels, définies via la notion de valuation d'une donnée radicielle, avec une filtration du centralisateur d'un tore déployé maximal.

Notation

Soit T un F-tore. Le groupe $T:=\mathbf{T}(F)$ a un unique sous-groupe borné maximal:

$$T_b = \{t \in T : v(\chi(t)) = 0 \text{ for all } \chi \in X^*(\mathbf{T})\}.$$

Sous-groupe d'Iwahori

Notons $\mathbf{T}(F_{\mathrm{nr}})^0 \subset \mathbf{T}(F)$ l'image de $\mathbf{T}(E)_b$ sous l'application norme $\mathbf{T}(E) \to \mathbf{T}(F_{\mathrm{nr}})$ pour toute extension galoisienne finie E/F_{nr} qui déploie \mathbf{T} . Posons

$$T^0 := \mathbf{T}(F_{\mathrm{nr}})^0 \cap T.$$

Le groupe T^0 est un sous-groupe d'Iwahori de T.

Tore induit

Un F-tore T est dit *induit* si le réseau $X^*(\mathbf{T})$, ou de manière équivalente $X_*(\mathbf{T})$, possède une \mathbb{Z} -base invariante sous l'action du groupe de Galois d'une extension de F déployant T.

Tore faiblement induit

 ${f T}$ est dit *faiblement induit* s'il existe une extension modérément ramifiée E/F telle que ${f T}_E:={f T}\times_E F$ soit induit.

Remarque

Si ${\bf G}$ est ou bien adjoint, ou bien simplement connexe, ou encore se déploie sur une extension modérément ramifiée, alors tout tore maximal et maximalement déployé de ${\bf G}$ est faiblement induit.

Filtrations pour les tores faiblement induits

 $T_0 := \mathbf{T}(F)^0$, et pour r > 0:

$$T_r = \mathbf{T}(F)_r := \{ t \in T_0 : \nu(\chi(t) - 1) \ge r \text{ for all } \chi \in X^*(T) \}.$$
 (1)

C'est une filtration strictement décroissante de T_0 par des sous-groupes ouverts bornés, qui est séparée $(\bigcap_r T_r = \{1\})$.

Le sous-groupe 7

Soit **S** un F-tore déployé maximal de **G**, et **Z** son centralisateur dans **G**. Si **G** est quasi-déployé, **Z** est un tore maximal **T**, et **Z**_r est alors défini par (1). Nous supposons pour le moment que Z_r a été aussi défini lorsque **G** n'est pas quasi-déployé.

Le sous-groupe U_a de G, for $a \in \Phi$, possède la filtration suivante par des sous-groupes ouverts compacts U_α , indexée par les $\alpha \in \Phi_{\mathrm{aff}}$ de gradient a.

Construction d'une valuation φ_a^x du groupe radiciel U_a pour $x \in A$, et $a \in \Phi$

Soit $u \in U_a - \{1\}$, il existe une fonction affine à valeurs réelles ψ^u_a sur A, de dérivée égale à a, telle que l'ensemble des points de A fixés par u soit le demi-appartement fermé $\{x \in A : \psi^u_a(x) \geq 0\}$.

Définition de $U_{a,x,r}$

Pour $u \in U_a$, nous posons $\varphi_a^x(u) := \psi_a^u(x)$. Posons $\varphi_a^x(1) := \infty$. Soit $x \in A$. Nous définissons

$$U_{a,x,r} := (\varphi_a^x)^{-1}([r,\infty]).$$
 (2)

Soit $\widetilde{\Phi} := \Phi \cup \{0\}$. Une fonction $f : \Phi \to \mathbb{R}$ est dite *concave* si $f(a+b) \le f(a) + f(b)$ pour tout $a, b \in \Phi$ tels que $a+b \in \Phi$.

Définition de $G_{x,f}$

Soit $f: \Phi \to \mathbb{R}$ une fonction concave. Définissons le sous-groupe suivant de G:

$$U_{a,x,f} := U_{a,x,f(a)} \cdot U_{2a,x,f(2a)}. \tag{3}$$

Notons $U_{x,f}$ le sous-groupe de G engendré par les $U_{a,x,f}$ pour tous les $a \in \Phi$. Posons

$$G_{x,f} := U_{x,f} \cdot Z_{f(0)}. \tag{4}$$

Définition de Gx.

Soit $G_{x,r}$ le sous-groupe (ouvert borné) de G engendré par Z_r et les $U_{a,x,r}$ pour les $a \in \Phi$.

Remarque

La définition de $G_{x,r}$ est complète, lorsque G est quasi-déployé. Pour le cas non quasi-déployé, il nous reste à définir Z_r .

Définition of Z_r lorsque **G** n'est pas quasi-déploye

L'immeuble $\mathcal{B}(Z)$ est constitué d'un unique point x. Le group $\mathbf{Z}(F_{\mathrm{nr}})$ est quasi-déployé et $x \in \mathcal{B}(Z) \subset \mathcal{B}(\mathbf{Z}(F_{\mathrm{nr}}))$. En appliquant la construction précédente au groupe $\mathbf{Z}(F_{\mathrm{nr}})$, nous obtenons les sous-groupes $\mathbf{Z}(F_{\mathrm{nr}})_{x,r}$. Posons

$$Z_r := \mathbf{Z}(F_{\mathrm{nr}})_{x,r} \cap Z.$$

Notation

Posons

$$G_{x,r+} := \bigcup_{t>r} G_{x,t}$$
 and $\mathbb{G}_{x,r} := G_{x,r}/G_{x,r+}$

Lorsque r > 0, le quotient $\mathbb{G}_{x,r}$ est abélien et s'identifie à un espace vectoriel sur le corps résiduel k_F de F.

Remarque

Le sous-groupe parahorique $G_{x,0}$ et son sous-groupe $G_{x,0+}$ dépendent seulement de la facette contenant x. En général, ce n'est pas le cas pour $G_{x,r}$, qui peut dépendre du point x choisi dans la facette.

Représentations lisses de G

Représentations (π, V) telles que $\operatorname{Stab}_G(v)$ est ouvert pour tout $v \in V$. Notation: $\mathfrak{R}(G)$ catégorie des représentations lisses de G, et $\operatorname{Irr}(G)$ l'ensemble des objets irréductibles de $\mathfrak{R}(G)$.

Profondeur (ou niveau) d'une représentation lisse irréductible [Moy-Prasad, 1994]

La profondeur de π est le plus petit nombre réel $d(\pi) \geq 0$ tel qu'il existe un point $x \in \mathcal{B}(G)$ satisfaisant $V^{G_{x,d(\pi)^+}} \neq \{0\}$.

Soit L un F-sous-groupe de Levi d'un F-sous-groupe parabolique de G. Soit $\sigma \in \operatorname{Irr}(L)$ supercuspidale. Notons $\mathfrak{X}_{\operatorname{nr}}(L)$ le groupe des caractères non ramifiés de L:=L(F), et

- $(L, \sigma)_G$ la classe de G-conjugaison de (L, σ)
- $\mathfrak{s} := [L, \sigma]_G$ la classe de *G*-conjugaison de $(L, \mathfrak{X}_{nr}(L) \cdot \sigma)$.

Soit $\mathfrak{B}(G)$ l'ensemble des \mathfrak{s} .

Décomposition de Bernstein de la catégorie $\mathfrak{R}(G)$

Soit $\mathfrak{R}^{\mathfrak{s}}(G)$ la sous-catégorie pleine de $\mathfrak{R}(G)$ dont les objets sont les représentations (π,V) dont tout G-sous-quotient est équivalent à un sous-quotient d'une induite parabolique $\mathrm{i}_{L,P}^G(\sigma')$, où $\sigma'\in\mathcal{O}$. Les catégories $\mathfrak{R}^{\mathfrak{s}}(G)$ sont indécomposables et:

$$\mathfrak{R}(G) = \prod_{\mathfrak{s} \in \mathfrak{B}(G)} \mathfrak{R}^{\mathfrak{s}}(G). \tag{5}$$

Notons $\operatorname{Irr}^{\mathfrak s}(G)$ l'ensemble des objets irréductible de $\mathfrak R^{\mathfrak s}(G)$.

Définition [Bushnell-Kutzko]

Une paire (J, λ) est un \mathfrak{s} -type pour G si elle satisfait à la propriété suivante:

 $(\lambda \text{ intervient dans la restriction de } \pi \in \mathrm{Irr}(G) \text{ à } J) \Leftrightarrow (\pi \in \mathrm{Irr}^{\mathfrak s}(G)).$

Exemple

La paire (I, triv) , où I est un sous-groupe d'Iwahori de G, est un \mathfrak{s} -type pour $\mathfrak{s} = [T, \operatorname{triv}]_G$, où T est le groupe des F-points d'un tore maximal déployé.

Plus généralement, soit $x \in \mathcal{B}(G)$ et $\tau \in \mathrm{Irr}(G_x/G_{x,0+})$ cuspidale. Notons τ l'inflation de τ à G_x (sous-groupe parahorique "non connexe"). La paire (G_x,τ) est un \mathfrak{s} -type pour G, où $\mathfrak{s}=[L,\sigma]_G$, avec σ de profondeur nulle.

Soit E/F une extension finie modérément ramifiée. Nous appelons E-sous-groupe de Levi tordu de \mathbf{G} un F-sous-groupe \mathbf{G}' de \mathbf{G} tel que $\mathbf{G}' \otimes_F E$ est un E-sous-groupe de Levi d'un E-sous-groupe parabolique de $\mathbf{G} \otimes_F E$.

Plongements d'immeubles

Soit L un sous-groupe de Levi de G et $y \in \mathcal{B}(L)$. Le plongement $\iota \colon \mathcal{B}(L) \hookrightarrow \mathcal{B}(G)$ est dit (y,r)-générique si, pour tore F-déployé maximal S de L tel que $y \in \mathcal{A}(L,S,F)$ (appartement associé à S dans $\mathcal{B}(L)$), on a

$$U_{a,\iota(y),r} = U_{a,\iota(y),r+} \quad \text{pour tout } a \in \Phi(\textbf{G},\textbf{S}) - \Phi(\textbf{L},\textbf{S}).$$

Soit $\overrightarrow{\mathbf{G}} = (\mathbf{G}^0 \subset \mathbf{G}^1 \subset \cdots \subset \mathbf{G}^d)$ une suite de *E*-sous-groupes de Levi tordus de \mathbf{G} , avec E/F modérément ramifiée. Soit L^0 sous-groupe de Levi de G^0 et $A_{\mathbf{L}^0}$ le tore F-déployé maximal du centre $Z_{\mathbf{L}^0}$ de \mathbf{L}^0 . Définissons $\mathbf{L}^i := Z_{\mathbf{G}^i}(A_{\mathbf{L}^0})$ (\mathbf{L}^i est un sous-groupe de Levi de \mathbf{G}^i), et posons $\overrightarrow{\mathbf{L}} := (\mathbf{L}^0, \mathbf{L}^1 \cdots, \mathbf{L}^d)$.

Définition

Diagramme commutatif de plongements:

$$\{\iota\}: \qquad \mathcal{B}(G^{0}) \xrightarrow{\iota} \mathcal{B}(G^{1}) \xrightarrow{\iota} \cdots \xrightarrow{\iota} \mathcal{B}(G^{d}).$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow \qquad \downarrow \downarrow \qquad \downarrow \downarrow \qquad \qquad \downarrow$$

Définition

Soit $\vec{s} = (s_0, s_1, \dots, s_d)$ une suite de nombres réels et $y \in \mathcal{B}(L^0)$. Nous dirons que $\{\iota\}$ est (\vec{s}, y) -générique si le plongement $\iota \colon \mathcal{B}(L^i) \hookrightarrow \mathcal{B}(G^i)$ est (y, s_i) -générique, pour $0 \le i \le d$.

Définition [Kim-Yu]

Une G-donnée de profondeur nulle est un triplet

$$((\mathbf{G},\mathbf{L}),(y,\iota),\boldsymbol{\tau}_L)$$

οù

- (1) **G** est un *F*-groupe réductif connexe
- (2) L est un sous-groupe de Levi de G
- (3) $y \in \mathcal{B}(L)$ est tel que $L_{y,0}$ soit un sous-groupe parahorique maximal de L, et $\iota \colon \mathcal{B}(L) \hookrightarrow \mathcal{B}(G)$ un plongement (y,0)-générique
- (4) $\tau_L \in \operatorname{Irr}(L_y)$ est tel que $\tau_L | L_{y,0}$ soit l'inflation à $L_{y,0}$ d'une représentation cuspidale de $\mathbb{L}_{y,0}$.

Définition

- Une **G**-donnée est un 5-uplet $\mathcal{D} = ((\vec{\mathbf{G}}, \mathbf{L}^0), (y, \{\iota\}), \vec{r}, \boldsymbol{\tau}_{L^0}, \vec{\phi})$ formé de
- D1. $\vec{\mathbf{G}} = (\mathbf{G}^0 \subset \mathbf{G}^1 \subset \cdots \subset \mathbf{G}^d = \mathbf{G})$: suite de *E*-sous-groupes de Levi tordus de \mathbf{G} , avec E/F modérément ramifiée, et L^0 sous-groupe de Levi de G^0 ;
- **D2.** $\overrightarrow{r} = (r_0, r_1, \dots, r_d)$: suite de nombres réels tels que $0 < r_0 < r_1 < \dots < r_{d-1} \le r_d$ si d > 0, and $0 \le r_0$ si d = 0;
- **D3.** $y \in \mathcal{B}(\mathbf{L}^0, F)$, et $\{\iota\}$: diagramme commutatif de plongements (\vec{s}, y) -générique, où $\vec{s} = (0, r_0/2, \cdots, r_{d-1}/2)$;
- **D4.** $\mathcal{D}^0 := ((\mathbf{G}^0, \mathbf{L}^0), (y, \iota), \boldsymbol{\tau}_{L^0})$: G^0 -donnée de profondeur nulle;
- **D5.** $\overrightarrow{\phi} = (\phi_0, \phi_1, \dots, \phi_d)$: suite de quasi-caractères, telle que ϕ_i est un quasi-caractère de G^i , qui est " G^{i+1} -générique" de profondeur r_i relativement à y pour tout $y \in \mathcal{B}(G^i)$.

Soit
$$\mathcal{D} = ((\vec{\mathbf{G}}, \mathbf{L}^0), (y, \{\iota\}), \vec{r}, \boldsymbol{\tau}_{L^0}, \overrightarrow{\phi})$$
 une **G**-donnée et $J_{G^0} := \langle L_y^0, G_{\iota(y),0}^0 \rangle$. Pour $0 \le i \le d$, posons

$$\begin{cases}
J^{i} := J_{G^{0}} G^{1}_{\iota(y), s_{0}} \cdots G^{i}_{\iota(y), s_{i-1}} \\
J^{i}_{+} := G^{0}_{\iota(y), 0+} G^{1}_{\iota(y), s_{0}+} \cdots G^{i}_{\iota(y), s_{i-1}+}.
\end{cases}$$
(6)

J^i et J^i_+ sont des groupes:

Par récurrence sur i: $J^0=J_{G^0}$ et $J^0_+=G^0_{\iota(y),0+}$. Pour i>0, $J_{G^0}G^1_{\iota(y),s_0}\cdots G^{i-1}_{\iota(y),s_{i-2}}$ est un groupe par hypothèse de récurrence. C'est un sous-groupe de $G^i_{\iota(y),0}$. Puisque $G^i_{\iota(y),0}$ normalise J_{G^0} , $G^1_{\iota(y),s_0},\ldots,G^{i-1}_{\iota(y),s_{i-2}}$, on voit que $J_{G^0}G^1_{\iota(y),s_0}\cdots G^i_{\iota(y),s_{i-1}}$ est un groupe.

De manière analogue:

Posons

$$J_L^i := L_V^0 L_{V,s_0}^1 \cdots L_{V,s_{i-1}}^i$$
 and $J_{L,+}^i := L_{V,0+}^0 L_{V,s_0+}^1 \cdots L_{V,s_{i-1}+}^i$.

Principaux résultats

Pour chaque *i*:

- La L-donnée $\mathcal{D}_{\mathbf{L}} := (\overrightarrow{\mathbf{L}}, y, \overrightarrow{r}, \boldsymbol{\tau}_{L^0}, \overrightarrow{\phi})$ permet de construire un type supercuspidal (J_L^i, λ_L^i) pour L^i .
- λ_L^i se prolonge en une représentation Λ_L^i de $\widetilde{J}_L^i := \mathrm{N}_{L^i}(J_L^i)$.
- $\sigma^i := \mathrm{c-Ind}_{\widetilde{J}_i^i}^L(\mathsf{\Lambda}_L^i)$ est supercuspidale irréductible [Yu].
- $\mathcal{D}_{\mathbf{G}}$ permet de construire un \mathfrak{s}^i -type (J^i, λ^i) pour G, où $\mathfrak{s}^i := [L^i, \sigma^i_{\mathcal{D}_i}]_{G^i}$ (qui est une paire couvrante de (J^i_L, λ^i_L)) [Kim-Yu].
- Si p est grand (i.e. ne divise pas |W|), toute supercuspidale irréductible de L^i s'obtient ainsi, et pour tout $\mathfrak{s}^i \in \mathfrak{B}(G^i)$, il existe un \mathfrak{s}^i -type ainsi construit [Kim (pour p très grand), Fintzen].
- Si p est petit, cette construction ne fournit en général pas toutes les supercuspidales, ni tous les \mathfrak{s}^i -types. D'autres constructions existent, qui sont exhaustives, pour $\mathrm{GL}_n(F)$ [Bushnell-Kutzko] et ses formes intérieures [Broussous, Sécherre-Stevens], $\mathrm{SL}_n(F)$ [Bushnell-Kutzko, Goldberg-Roche] (p arbitraire), les groupes classiques [Stevens, Miyauchi-Stevens] ($p \neq 2$).

Définition

Un système de coefficients (d'espaces vectoriels complexes) \underline{V} sur l'immeuble de Bruhat-Tits $\mathcal{B}(G)$ est constitué d'espaces vectoriels complexes $V_{\mathcal{F}}$ pour toute facette \mathcal{F} de $\mathcal{B}(G)$, et d'applications linéaires

$$\mathrm{r}_{\mathcal{F}'}^{\mathcal{F}}\colon V_{\mathcal{F}}\longrightarrow V_{\mathcal{F}'}\quad \text{pour toute paire de facettes }\mathcal{F}'\subset\overline{\mathcal{F}}$$

telle que $r_{\mathcal{F}}^{\mathcal{F}}=\mathrm{id}$ et $r_{\mathcal{F}''}^{\mathcal{F}}=r_{\mathcal{F}''}^{\mathcal{F}'}\circ r_{\mathcal{F}'}^{\mathcal{F}}$ si $\mathcal{F}''\subset\overline{\mathcal{F}}'$ et $\mathcal{F}'\subset\overline{\mathcal{F}}$. Les systèmes de coefficients forment une catégorie $\mathrm{Coeff}(\mathcal{B}(\mathcal{G}))$.

Pour $n \in \mathbb{Z}_{\geq 0}$, le groupe $G_{x,n+}$ dépend seulement de la facette \mathcal{F} contenant le point x. Nous le noterons $G_{\mathcal{F},n+}$. Considérons la filtration

$$G_{\mathcal{F},0}\supset G_{\mathcal{F},0+}\supset G_{\mathcal{F},1+}\supset G_{\mathcal{F},2+}\cdots\supset\cdots$$

de $G_{\mathcal{F},0}$.

Le système de coefficients $\,V\,$

Fixons un entier $n \ge 0$. Pour toute représentation (π, V) dans $\mathfrak{R}(G)$, nous disposons du système de coefficients $\underline{V} := (V^{G_{\mathcal{F},n+}})$ de sous-espaces de vecteurs fixes

$$V_{\mathcal{F}}:=V^{\mathcal{G}_{\mathcal{F},n+}}:=\left\{v\in V\,:\,\pi(g)(v)=v\quad \text{for all }g\in\mathcal{G}_{\mathcal{F},n+}
ight\},$$

où les applications de transition $r_{\mathcal{F}'}^{\mathcal{F}} \colon V^{G_{\mathcal{F},n+}} \hookrightarrow V^{G_{\mathcal{F}',n+}}$ sont les inclusions naturelles, puisque $G_{\mathcal{F}',n+} \subset G_{\mathcal{F},n+}$ pour $\mathcal{F}' \subset \overline{\mathcal{F}}$.

Le foncteur

$$\gamma_n \colon \mathfrak{R}(G) \longrightarrow \operatorname{Coeff}(\mathcal{B}(G)) \quad V \mapsto V^{G_{\mathcal{F},n+}}$$

est exact.

Le *d*-squelette de $\mathcal{B}(G)$

Via sa partition en facettes $\mathcal{B}(G)$ acquiert une structure de complexe polysimplicial localement fini, de dimension ℓ , où ℓ est le F-rang semi-simple de G. Pour $0 \leq d \leq \ell$, notons $\mathcal{B}(G)_d$ l'ensemble des facettes de dimension d de $\mathcal{B}(G)$.

Posons

$$\mathcal{B}(G)^d := \bigcup_{\mathcal{F} \in \mathcal{B}(G)_d} \overline{\mathcal{F}} \quad \text{et} \quad \mathcal{B}(G)^{-1} := \emptyset.$$

Définition

Une d-facette orientée est:

- si d > 0, une paire (\mathcal{F}, c) , où $\mathcal{F} \in \mathcal{B}_d(F)$ et c est un générateur de $H_d(\mathcal{B}(G)^d, \mathcal{B}(G)^d \setminus \mathcal{F}; \mathbb{Z})$; alors $(\mathcal{F}, -c)$ est aussi une d-facette orientée,
- une 0-facette orientée est simplement une 0-facette F (que l'on peut considérer aussi comme la paire $(\mathcal{F},1)$, où 1 est le générateur canonique de $H_0(\mathcal{B}(G)^0,\mathcal{B}(G)^0\backslash\mathcal{F};\mathbb{Z})=\mathbb{Z})$.

Notons $\mathcal{B}(G)_{(d)}$ l'ensemble des \mathcal{F} -facettes orientées.

Définition

Pour tout $0 \le d \le I$, l'espace des d-chaînes orientées de $\gamma_n(V)$ est défini comme étant le \mathbb{C} -espace vectoriel $\mathcal{C}_{d,n}(V)$ des applications

$$\gamma \colon \mathcal{B}(G)_{(d)} \to V$$

telles que

- ullet le support de γ est fini
- $\gamma((\mathcal{F},c)) \in V^{G_{\mathcal{F},n+}}$
- si $d \ge 1$, $\gamma(\mathcal{F}, -c) = -\gamma(\mathcal{F}, c)$, pour tout $(\mathcal{F}, c) \in \mathcal{B}(G)_{(d)}$.

Le groupe G agit sur l'espace $C_{d,n}(V)$ via

$$(g \cdot \gamma)((\mathcal{F}, c)) := g(\gamma((g^{-1}\mathcal{F}, g^{-1}c))).$$

L'application $\partial \colon \mathcal{C}_{d+1,n}(V) \longrightarrow \mathcal{C}_{d,n}(V)$ envoie γ sur l'application

$$(\mathcal{F}(x'),c') \mapsto \sum_{\substack{(\mathcal{F},c) \in \mathcal{B}_{(d+1)} \\ \mathcal{F}' \subset \overline{\mathcal{F}}, \ \partial_{\mathcal{F}'}^{\mathcal{F}}/(c) = c'}} \gamma((\mathcal{F},c)).$$

Elle vérifie $\partial \circ \partial = 0$. On a donc le complexe de chaînes augmenté

$$C_{d,n}(V) \xrightarrow{\partial} C_{d-1,n}(V) \xrightarrow{\partial} \cdots \xrightarrow{\partial} C_{0,n}(V) \xrightarrow{\epsilon} V,$$

où ϵ envoie γ sur $\sum_{\mathcal{F} \in \mathcal{B}_{(0)}(G)} \gamma(\mathcal{F})$.

Notation

Pour tout sous-groupe ouvert compact J de G, notons $\mathfrak{R}^J(G)$ la sous-catégorie pleine de $\mathfrak{R}(G)$ des représentations V qui sont engendrées par leurs J-invariants vecteurs V^J .

Proposition

La catégorie $\mathfrak{R}^{\leq n}(G)$ des représentations lisses de G de profondeur $\leq n$ est abélienne, et

$$\mathfrak{R}^{\leq n}(G) = \bigcup_{\substack{x \text{ sommet de } \mathcal{B}(G)}} \mathfrak{R}^{G_{x,n+}}(G).$$

Définition

Un point x dans A est dit *spécial* si, pour chaque direction de mur, il existe un mur de A qui passe par x.

Theorem [Schneider-Stuhler, 1997]

Soit x un sommet spécial dans \mathcal{A} . Pour toute représentation V de G dans $\mathfrak{R}^{G_{\mathcal{F},n^+}}$, le complexe augmenté $\mathcal{C}_{\star,n}(V) \longrightarrow V$ est une résolution exacte de V dans la catégorie $\mathfrak{R}(G)$.

Theorem [Schneider-Stuhler], [Broussous, représentations lwahori-sphériques de $\mathrm{GL}_n(F)$]

Si (π, V) a un caractère central χ , alors $\mathcal{C}_{d,n}(V)$ est une résolution projective de (π, V) dans la sous-catégorie $\mathfrak{R}_{\chi}(G)$ des représentations de caractère central χ .

Corollaire

Soient (π, V) et (π', V') dans $\mathfrak{R}^{\leq n}(G)$ de type fini. Alors

- $\operatorname{Ext}^{i}(V, V')$ est de dimension finie,
- $\operatorname{Ext}^{i}(V, V') = 0 \text{ si } i > \ell.$

Merci beaucoup pour votre attention!

